Ela Perturbations of Functions of Diagonalizable Matrices

نویسنده

  • MICHAEL I. GIL
چکیده

Let f be a scalar function defined on σ(A) ∪ σ(Ã). The aim of this paper is to establish inequalities for the norm of f(A) − f(Ã). The literature on perturbations of matrix valued functions is very rich but mainly, perturbations of matrix functions of a complex argument and matrix functions of Hermitian matrices were considered, cf. [1, 11, 13, 14, 16, 18]. The matrix valued functions of a non-Hermitian argument have been investigated essentially less, although they are very important for various applications; see the book [10].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on Maximal Distances in a Commuting Graph

It is shown that matrices over algebraically closed fields that are farthest apart in the commuting graph must be non-derogatory. Rank-one matrices and diagonalizable matrices are also characterized in terms of the commuting graph.

متن کامل

Approximate Joint Matrix Triangularization

We consider the problem of approximate joint triangularization of a set of noisy jointly diagonalizable real matrices. Approximate joint triangularizers are commonly used in the estimation of the joint eigenstructure of a set of matrices, with applications in signal processing, linear algebra, and tensor decomposition. By assuming the input matrices to be perturbations of noise-free, simultaneo...

متن کامل

Ela a Bound for Condition Numbers of Matrices

Let A be a diagonalizable matrix; so there is an invertible matrix T and a normal matrixˆD, such that T −1 AT = ˆ D. A sharp bound for the constant κ T = T T −1 is suggested. Some applications of the obtained bound are also discussed.

متن کامل

Ela Perturbation of Purely Imaginary Eigenvalues of Hamiltonian Matrices under Structured Perturbations∗

The perturbation theory for purely imaginary eigenvalues of Hamiltonian matrices under Hamiltonian and non-Hamiltonian perturbations is discussed. It is shown that there is a substantial difference in the behavior under these perturbations. The perturbation of real eigenvalues of real skew-Hamiltonian matrices under structured perturbations is discussed as well and these results are used to ana...

متن کامل

Ela Perturbation of the Generalized Drazin Inverse

In this paper, we investigate the perturbation of the generalized Drazin invertible matrices and derive explicit generalized Drazin inverse expressions for the perturbations under certain restrictions on the perturbing matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010